Geothermal Heating and Cooling

Lessons Learned from NM
Geothermal Heat Pump Installations

Jack Mc Gowan, CEM

GHP Best Practices

Optimize operating cost for cooling
Improve Capital Projects
Improve learning environments
Agenda

- HVAC System Options
- Geothermal Heat Pump Technology
- Installation Options
 - Methods to implement best practices
- Success Stories
- The future
“Do Nothing” is not an option in most cases

System Options

- Boiler & Chiller with Fan Coils or other unitary
 - Requires Classroom Ventilation units
- Package Roof top Units (DX or Evaporative)
- Geothermal Heat Pumps (GHP)
 - Requires Classroom Ventilation units

GHP is a trend and offers Value

Question: How to do it right?
Main Components of Fan Coil Systems

The Mechanical System

• Boilers, Chillers, Cooling towers use more energy & water. Require specialized service
• Systems require addition mechanical area and must to effectively implemented
• Interior piping is a challenge
• 20 to 25 year equipment life

The Learning Environment

• Less efficient heating and cooling system
• Requires ventilation air for classroom codes
• Cumbersome control process with one thermostat for multiple rooms leads to poor learning environment

Cost Estimates

• Higher first cost due to large equipment
• Higher Operating and Maintenance cost
• Not likely to be approved by State
Main Components of Roof top Systems

The Mechanical System

• Boilers and Cooling towers use more energy & water. Require specialized service
• Systems also require addition mechanical area and must to effectively implemented
• 10 to 15 year equipment life

The Learning Environment

• One unit for two or three classrooms makes for poor learning environment
• Provides ventilation air for classroom codes
• One thermostat for multiple rooms is a comfort problem

Cost Estimates

• Higher first cost due to larger equipment
• Higher Operating and Maintenance cost
• Not likely to be approved by State
Benefits of the GHP System

Annual Cost:

<table>
<thead>
<tr>
<th>Energy & Maintenance Cost</th>
<th>Life Cycle Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>• GHP lower, less volatile energy cost</td>
<td>• GHP 5 to 10 years longer life</td>
</tr>
<tr>
<td>• GHP much lower in maintenance</td>
<td>• Energy and maintenance savings produce cost benefits over time</td>
</tr>
<tr>
<td>• Qualify learning environment</td>
<td></td>
</tr>
</tbody>
</table>
GHP Installation Process

When the GHP decision is made...

- Owner must decide based on needs & benefits
 - Energy and Environmental Costs
 - Learning Environment
- Consider best practices and enlisting support from GHP expert in design process
- Consider specifying a specialty contractor
 - Single point of accountability
 - Proven performance
 - Long term support
GHP System: Main Components

The Earth Heat Exchanger (outside)
- The EHX design is a fundamental issue.
- Integrated processes critical for efficiency and reliability of installation in long term:
 - Design Engineering Assistance
 - Drilling, Looping, & Grouting
 - Trenching, Headering & Manifolding
 - Test, Meter, Verify and Acceptance
- Life expectancy 20 - 25 years
- Interior piping may still be a challenge

The Learning Environment
- Most efficient heating and cooling system
- Decentralized design: each heat pump is installed close to zone/classroom it serves.
- GHP heat pump is easy to service and does not require specialized training
- Lower Energy & Maintenance cost
- One unit & thermostat for each classroom
- Provides ventilation air for classroom codes

Cost Estimates
- Higher first cost repaid energy/service cost
GHP Best Practices

✓ Turnkey responsibility for full scope of work
✓ New Mexico Proven Performance & Licensed
 ✓ Require bidders to demonstrate experience
✓ Optimize equipment quality
 ✓ All BACnet based controls & other standards throughout
✓ 5 year Performance Guarantee on full system
Quality in every process

1- inch vertical loops, Heat fusion joined, Flanged connections

Multiple Parallel Header Pipes (3 inch)

Main Supply Header (8 inch)

Air Vents

Shut Off Valves

Pressure/Temp. Ports
Success Stories

Alamogordo Public Schools
Phase 1: 400 Wing & Tiger Pit
District-wide Energy & Controls

Yucca Elementary
Phase 1: Balance of High School
Heights Elementary
… this summer

Cobre Consolidated Schools

El Monte Sagrado
Summit At Cottonwood WSHP

Commercial Project too...
The Future

- Smart Systems
- Efficient Systems
- Dashboards
 - Energy performance
 - Carbon footprint
- Optimize Maintenance & Performance
- Demand Response
- GridWise
 - Electric System Price signals & interoperability